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Abstract

Gradient-based policy search is an alternative to value-function-based meth-

ods for reinforcement learning in non-Markovian domains. One apparent draw-

back of policy search is its requirement that all actions be \on-policy"; that

is, that there be no explicit exploration. In this paper, we provide a method

for using importance sampling to allow any well-behaved directed exploration

policy during learning. We show both theoretically and experimentally that

using this method can achieve dramatic performance improvements.
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1 Introduction

Reinforcement learning (Sutton & Barto, 1998) provides a framework for solving

and learning to solve large combinatorial decision problems such as Markov deci-

sion processes (mdps) (Puterman, 1994) and partially observable mdps (pomdps)

(Kaelbling et al., 1998). There are two main approaches to solving reinforcement

learning problems. On one side, value search algorithms such as Q-learning (ql)

and sarsa(�) (Sutton & Barto, 1998) �nd the optimal policy by �rst searching for

the optimal value function, and then deducing the optimal policy from the optimal

value function. Look-up table implementations of these algorithms can be showed

to converge to a global optimum of the expected reward (Watkins & Dayan, 1992;

Singh et al., 2000). However, they work only in completely observable (Markovian)

environments. Although some attempts to use value search in partially observable

settings have been made (Littman, 1994; Wiering & Schmidhuber, 1997), none of

these techniques is guaranteed to �nd an optimal solution. This is simply because

Bellman's equation does not transfer to non-Markovian environments. More precise-

ly, we cannot rewrite Bellman's fundamental equation by replacing states with ob-

servations in a partially observable environment. The use of (Bayesian) belief-states

instead of the original states enables a value-function approach, but it increases the

complexity of the problem dramatically (Kaelbling et al., 1998).

On the other side, policy search algorithms such as reinforce (Williams, 1992)

work directly in the policy space, trying to maximize the expected reward without

the help of value functions. Most policy search algorithms are based on approx-

imating gradient descent in some way (e.g., (Williams, 1992; Baxter & Bartlett,

2000; Marbach & Tsitsiklis, 2001)). Therefore, they typically �nd only local optima

of the expected reward. Moreover, it is often believed that value search is faster:

in some sense, Bellman's optimality principle is a powerful heuristic to guide the

search, and policy search algorithms are less informed than value search algorithms.

However, gradient-based policy search accommodates partial observability and non-

Markovianism very well (Baird & Moore, 1999; Baxter & Bartlett, 2000). It can

be used to �nd (locally) optimal controllers under many kinds of constraints, with

many di�erent forms of memory (Meuleau et al., 1999; Peshkin et al., 1999; Kim

et al., 2000), including in partially observable multi-agent settings (Peshkin et al.,

2000; Bartlett & Baxter, 2000).

The basic gradient-based policy search algorithm is reinforce (Williams, 1992).

We consider a more general de�nition of reinforce independently of the neural

network used to encode the policy. It performs stochastic gradient descent of the

expected reward. reinforce is basically an on-policy algorithm (Sutton & Barto,

1998): the gradient at a given point in the policy space is estimated by following

precisely this policy during learning trials. It corresponds to a naive way of estimating

expectation by sampling. A more sophisticated way is o�ered by the Monte Carlo

technique known as importance sampling (Rubinstein, 1981). Applied to reinforce,

it allows o�-policy implementations of the algorithm, that is, we may execute a policy
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di�erent from the current policy during the learning trials.

O�-policy implementations are interesting in many respects. First, we may not

have a choice. For instance, we may not be able to execute any policy during

learning trials, or we may have to learn from a given training set of trajectories.

Second, o�-policy algorithms may be used to optimize several policies or controllers

at the same time. In Sutton et al.'s intra-option learning, an o�-policy (value search)

algorithm is used to train several policies (or options) simultaneously (Sutton et al.,

1998). In the case of gradient-based policy search, o�-policyness allows simultaneous

optimization of several controllers, possibly with di�erent architecture, which could

lead to evolving controller architecture. Another advantage of o�-policy algorithms is

that they can re-use past experience at any step of learning: the trajectories sampled

in the beginning of learning may be used later on, even if the policy changed in

between. (Kearns et al., 1999) proposed an algorithm based on this idea for pomdps.

Finally, o�-policy implementations may allow for dramatic reduction in the (sample)

complexity of learning. In the following, we focus particularly on the latter point.

In this paper, we propose o�-policy implementations of reinforce based on

importance sampling. We show that they can be used to reduce the complexity

of learning, which is measured as a function of two parameters: the number of

learning trials required to reach a given performance, and the length of learning

trials. We present simulation results where our o�-policy algorithms reduce both,

which results in a dramatic reduction of the total number of time-steps of interaction

required to reach a given performance level. This work bears many similarities with

certain aspects of Sutton and Barto's book (1998), and with (Precup et al., 2000).

However, it concerns gradient-based policy search, while previous work focus on value

search approaches. To save space, we suppose that the reader is familiar with basic

notions of Markov decision processes (mdps) and reinforcement learning. A brief

introduction to reinforce is given in section 2. Throughout the paper, we focus

on fully observable mdps, which are solved by reinforce implementing a reactive

policy. However, the technique of importance sampling can be used in any variation

of reinforce, including in partially observable environments, and in other gradient-

based algorithm as well. The end of the paper presents simulation results obtained

in a partially observable environment.

2 Gradient-Based Policy Search

To simplify the presentation, we suppose that the environment is a �nite mdp and

that reinforce is used to optimize the parameters (action probabilities) of a s-

tochastic memoryless policy, which is suÆcient in such an environment (see (Meuleau

et al., 1999) for more complex setting). We also suppose that the problem is a goal-

achievement task, i.e., there is an absorbing goal state that must be reached as fast

as possible. We will insure that all policies are proper, i.e., that we �nally reach the

goal with probability 1 under any policy, by preventing the action probabilities from

3



going to 0. Typically, the policy will be stored as set of weights, wsa 2 IR, decoded

using Boltzmann's law:

�(s; a)
def
= Pr(at = a j st = s) =

ewsa=�P
a0 ewsa

0=�
> 0 ;

where st and at are the state and action at time t, and � is a constant temperature

parameter.

(Episodic) reinforce was introduced by Williams (Williams, 1992). It performs

stochastic gradient ascent of the expected cumulative reward V� = E� [
P

1

t=0
trt],

where  is the discount factor, rt is the reward at time t and � is the current policy.

The less sophisticated implementation of the algorithm is based on the equality

V� =

1X
T=1

X
�hT2

�HT

Pr
�
�hT j �

� T�1X
t=0

Rt
�
�hT
�
;

where �hT = (s0; a0; r0; : : : sT�1; aT�1; rT�1; sT ) is an experience sequence of length T

(s0, s1, : : : sT�1 are all di�erent from the goal state, sT is the goal state), �HT is the

set of all such sequences, and Rt(�hT ) is the reward at time t in �hT . Then

@

@wsa

V� =

1X
T=1

X
�hT2

�HT

Pr
�
�hT j �

�
�Csa

�
�hT
�

= E�

�
�Csa

�
�hT
��

;

where �Csa(�hT ) is the contribution of �hT to the partial derivative of V� with respect

to wsa:

�Csa(�hT )
def
=

T�1X
t=0

trt

T�1X
t0=0

@

@wsa

ln(�(st0; at0)) :

If experience sequences are sampled following Pr(� j �), that is, if the current policy

is followed during learning trials, then the contribution �Csa of an experience trial
�hT is an unbiased estimate of the gradient that may be used to make a step in the

policy-space. The contribution is generally easy to calculate. For instance, if the

policy is stored using look-up tables and Boltzmann's law, then we have:

@

@wsa

ln(�(s0; a0)) =

8<
:

(1� �(s0; a0))=� if s = s0 and a = a0 ,

��(s0; a0)=� if s = s0 and a 6= a0 ,

0 otherwise .

A simple algorithm using this policy architecture is presented in �g. 1.

As Williams stressed (Williams, 1992), this brute implementation of reinforce does

not perform optimal temporal credit assignment, since it ignores the fact that the

reward at time t does not depend on the actions performed after time t. A more
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1. Initialize the controller weights wsa;

2. Beginning of a trial:

� for all (s; a): Ns  0, Nsa  0;

� R 0;

3. At each time-step t of the trial:

� draw an action at at random following �(st; �);

� Nst
 Nst

+ 1, Nstat
 Nstat

+ 1;

� execute an action at, receive st; rt from environment;

� R R+ 
t
rt;

4. End of the trial:

� for all (s; a): wsa  wsa + �R(Nsa � �(s; a)Ns)=�;

5. Loop: return to 2.

Figure 1: Algorithm 1: a simple implementation of reinforce using look-up tables and the

Boltzmann's law. � is the step-size parameter, or learning rate.

eÆcient implementation that takes into account the causality of rewards can be

obtained by rewriting the expected reward in the form

V� =

1X
t=1

X
ht2Ht

Pr(ht j �)R
t(ht) ;

where ht = (s0; a0; r0; : : : st�1; at�1; rt�1; st) is an experience pre�x of length t (st may

be di�erent from the goal state), and Ht is the set of all such experience pre�xes

( �Ht � Ht). The gradient of V� may then be expressed in the form

@

@wsa

V� =

1X
t=1

X
ht2Ht

Pr(ht j �)Csa(ht) =

1X
t=1

E�

�
X t

Csa

�
;

where Csa(s0; a0; r0; : : : st�1; at�1; rt�1; st) is the contribution of the pre�x ht

Csa(ht)
def
= t�1rt�1

t�1X
t0=0

@

@wsa

ln(�(st0 ; at0));

and X t

Csa
is the random variable that takes the value Csa(ht) if an experience trial

ends after or at time t, and 0 otherwise. During an experience trial following the

current policy �, we calculate an unbiased estimate of E� [X
t

Csa
] for each t 2 IN. The

sum of these estimates|which is an unbiased estimate of the gradient|is used to

update the policy at the end of the trial. The di�erent estimates are not mutually

independent, but it does not hurt since we are only summing them. Figure 2 presents

a look-up table implementation of this algorithm. Note that algorithms 1 and 2 are

exactly equivalent if we use the goal-reward model, that is, if the reward is always 0

except at the goal. Algorithm 2 has been later generalized by Baird and Moore so

that it can mix value and policy search (Baird & Moore, 1999).
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1. Initialize the controller weights wsa;

2. Beginning of a trial:

� for all (s; a): Ns  0, Nsa  0, �wsa  0;

3. At each time-step t of the trial:

� draw an action at at random following �(st; �);

� Nst
 Nst

+ 1, Nstat
 Nstat

+ 1;

� execute an action at, receive st; rt from environment;

� for all (s; a): �wsa  �wsa + 
t
rt(Nsa � �(s; a)Ns)=�;

4. End of the trial:

� for all (s; a): wsa  wsa + ��wsa;

5. Loop: return to 2.

Figure 2: Algorithm 2: a look-up table implementation of reinforce that takes into account the

causality of rewards.

3 O�-Policy Implementations of reinforce

reinforce is basically an on-policy algorithm (Sutton & Barto, 1998): the gradient

at a given point in the policy space is estimated by acting following precisely this

policy during learning trials. Conversely, o�-policy algorithms are able to improve a

given policy while executing a di�erent one during interactions with the environment.

In this section, we present o�-policy implementations of reinforce.

3.1 Simple Importance Sampling

The key to o�-policy implementations of reinforce is the Monte Carlo technique

known as importance sampling (is) (Rubinstein, 1981). reinforce uses naive sam-

pling because it estimates the expectations of �Csa and X t

Csa
conditionally on the

current policy �, by sampling experience sequences and pre�xes following the cur-

rent policy �. A more sophisticated solution consists of de�ning another policy �0

such that Pr(ht j �) > 0 =) Pr(ht j �
0) > 0 for all ht and all t, executing �0 instead

of � during learning trials, and multiplying the contribution �Csa or Csa of each ex-

perience sequence or pre�x ht = (so; a0; r0; : : : st�1; at�1; rt�1; st) by the importance

coeÆcient

K(ht)
def
=

Pr(ht j �)

Pr(ht j �0)
= �t�1

t0=0

�(st0 ; at0)

Pr(at0 j Trunc(ht; t0); �0)
;

where Trunc(ht; t
0) is ht truncated at time t

0. For instance, if �0 is a stationary policy

(�0(s; �) is a probability distribution on actions, for all s), then

K(ht) = �t�1

t0=0

�(st0; at0)

�0(st0 ; at0)
:

As E� [X(ht)] = E�0 [K(ht)X(ht)] for all random variables X(ht), we still get an

unbiased estimate of the gradient. Note that the importance coeÆcients may be
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1. Initialize the controller weights wsa;

2. Beginning of a trial:

� for all (s; a): Ns  0, Nsa  0;

� R 0;

� K  1;

� h (s0);

3. At each time-step t of the trial:

� with probability �: at  �e(h),

with prob. 1� �: draw at at random following �(st; �);

� if at = �e(h): K  K�(st; at)=(�+ (1� �)�(st; at)),

else: K  K=(1� �);

� Nst
 Nst

+ 1, Nstat
 Nstat

+ 1;

� execute an action at, receive st; rt from environment;

� R R+ 
t
rt;

� append the triple (at; rt; st+1) to h;

4. End of the trial:

� for all (s; a): wsa  wsa + �KR(Nsa � �(s; a)Ns)=�;

5. Loop: return to 2.

Figure 3: Algorithm 3: an o�-policy implementation of reinforce that does not take into

account the causality of rewards. During the learning trials, the algorithm executes a mixture of

the deterministic non-stationary policy �e with probability �, and of the current policy � with

probability 1� �.

calculated incrementally and without knowing the dynamics of the environment.

Moreover, �0 may be any policy, it does not have to be stationary (as is �). Notably,

�0 can use any type of extra information such as counters of state visits. The only

requirement is that any trajectory possible under � is still possible under �0. Hence

we cannot use any deterministic policy. But we can, for instance, mix such a policy

with the current policy, that is, at each time step we follow a deterministic policy

with probability � 2 [0; 1), and the current policy � with probability (1� �) > 0.

Figures 3 and 4 present the algorithms obtained if �0 is the mixture of the de-

terministic non-stationary policy �e :
S
1

t=1
Ht ! A with probability �, and of the

current policy with probability 1� �. The variable h is used to store the history of

the trial, which is formally necessary because we de�ned �e as a function of the whole

past history. However, the non-stationary policy �e may not use such a complete

memory. For instance, if �e bases the choice of next action only on counters of state

visit, then we do not need to remember the whole previous history, we just have to

maintain the necessary counters.

3.2 Weighted Importance Sampling

Numerical simulations using algorithms 3 and 4 showed a big instability that increas-

es with � (see section 5). This instability is the expression of a known drawback of

is when the sampling distribution (the strategy used during learning) di�ers a lot
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1. Initialize the controller weights wsa;

2. Beginning of a trial:

� Ns  0, Nsa  0, for all (s; a);

� �wsa  0, for all (s; a);

� K  1;

� h (s0);

3. At each time-step t of the trial:

� with probability �: at  �e(h),

with prob. 1� �: draw at at random following �(st; �);

� if at = �e(h): K  K�(st; at)=(�+ (1� �)�(st; at)),

else: K  K=(1� �);

� Nst
 Nst

+ 1, Nstat
 Nstat

+ 1;

� execute an action at, receive st; rt from environment;

� for all (s; a):

�wsa  �wsa +K
t
rt(Nsa � �(s; a)Ns)=�;

� append the triple (at; rt; st+1) to h;

4. End of the trial:

� for all (s; a): wsa  wsa + ��wsa;

5. Loop: return to 2.

Figure 4: Algorithm 4: an o�-policy implementation of reinforce that takes into account the

causality of rewards.

from the target distribution (the current policy) (Zlochin & Baram, 2000). In this

case, very unlikely events are associated with huge importance coeÆcients. Hence,

whenever they happen, they induce devastating weight updates that can stick the al-

gorithm to a very bad policy. The technique known as weighted importance sampling

has been designed to alleviate this drawback (Precup et al., 2000). In reinforce,

it consists of estimating E�

�
�Csa

�
by drawing n samples �C1; �C2 : : : �Cn of �Csa(ht) fol-

lowing a sampling policy �0, calculating the n associated importance coeÆcients

K1; K2 : : :Kn, and using the quantity
P

n

i=1
Ki

�Ci=
P

n

i=1
Ki as an estimate of the gra-

dient. This estimate is biased, but the bias tends to 0 as n tends to in�nity. It is

often a faster and more stable estimate than simple is's estimate.

Figure 5 presents the algorithm obtained if we use look-up tables and Boltzmann

law. This algorithm is in the line of algorithm 1 and 3, that is, it does not perform

optimal credit assignment. Unfortunately, there is no incremental implementation

of weighted is in the line of algorithm 2. To integrate weighted is in algorithm 2,

we need to sum in a variable �t

sa
the values of X t

Csa

during the n learning trials

preliminary to a weight-update, for each time t. In the same way, the sum of the

importance coeÆcient K(ht) must be calculated in a di�erent variable Kt for each

time t. Therefore, the algorithm loses its incrementality. As we will see in section

5, algorithm 5 achieved the best performances of all the algorithms presented in this

paper. This shows that it can be worthwhile to sacri�ce the quality of temporal

credit assignment to the possibility of using eÆcient sampling policies.
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1. Initialize the controller weights wsa;

2. Initialize variables:

� for all (s; a): �sa  0;

� K  0;

3. For i = 1 to n: (executes n learning trials)

� Beginning of a trial:

� for all (s; a): Ns  0, Nsa  0;

� R 0;

� K  1;

� h (s0);

� At each time-step t of the trial:

� with probability �: at  �e(h);

with prob. 1� �: draw at at random following �(st; �);

� if at = �e(h): K  K�(st; at)=(�+ (1� �)�(st; at));

else: K  K=(1� �);

� Nst
 Nst

+ 1, Nstat
 Nstat

+ 1;

� execute an action at, receive st; rt from environment;

� R R+ 
t
rt;

� append the triple (at; rt; st+1) to h;

� End of the trial:

� for all (s; a): �sa  �sa +KR(Nsa � �(s; a)Ns)=�;

� K  K +K;

4. Update policy:

� for all (s; a): wsa  wsa + ��sa=K;

5. Loop: return to 2.

Figure 5: Algorithm 5: an o�-policy implementation of reinforce based on weighted importance

sampling.

4 Complexity Issues

As we said in the introduction, o�-policyness o�ers many advantages, including the

possibility to optimize several controllers simultaneously (Sutton et al., 1998), and

the possibility to reuse past experience (Kearns et al., 1999). In this section, we show

that o�-policy implementations can also be used to reduce the sample complexity of

reinforce, as measured by two variables: the number of leaning trials necessary to

reach a given performance level, and the length of learning trials learning.

4.1 Number of Learning Trials

The technique of is was originally designed to increase the accuracy of Monte Carlo

estimates by reducing their variance. In the context of reinforce, a more accurate

estimate of the gradient at the end of each trial would imply that less trials are

needed to reach a given performance. Therefore, the �rst motivation for choosing

the sampling policy is speeding up learning in terms of the number of trials.

A classical result of the theory of Monte Carlo estimation (Kahn & Marshall,

1953) implies that the optimal sampling policy, that is, the policy that minimizes
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Figure 6: Learning curves obtained in the 15�15 partially-observable no-reset variant of the

problem, using Meuleau and Bourgine's global exploration policy (� = 0:1, goal-reward,  = 0:95,

� = 0:01, n = 3, � = 1, average of 30 runs)

the variance of is estimate, should give to a sequence �hT a probability proportional

to its importance Pr(�hT j �)j �Csa(�hT )j. Unfortunately, it may not be possible to

implement this optimal sampling policy of �Csa for all (s; a) at the same time. More-

over, to implement this sampling scheme in reinforce, the agent needs to know

the dynamics of the environment (transition probabilities, reward function). This

contradicts assumptions in rl. There are techniques which allow to approximate the

optimal distribution, by changing the sampling distribution during the trial, while

keeping the resulting estimates unbiased via reweighting of samples (see for example

adaptive sampling (Oh & Berger, 1992)).

Another issue is that bias estimates may sometimes be more eÆcient that unbi-

ased estimates. In general, there is a bias/variance dilemma in Monte Carlo estima-

tion. Zlochin and Baram (Zlochin & Baram, 2000) showed that the biased estimate

obtained by using a sampling distribution di�erent from the target distribution, but

not correcting the estimate with importance coeÆcients, may have a smaller estima-

tion error than is's unbiased estimate when the number of samples is small. This is

due to the big variance of simple is's estimate. Our simulation results show that the

best algorithm is algorithm 5, which uses a biased estimate. In a stochastic gradient
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Figure 7: Sample complexity of the algorithms measured in the conditions of �g. 6. � = 0:1.

algorithm, a bias estimate may also be interesting because the bias is eÆcient in some

sense. For instance, the bias may help get out of (bad) local optima. Although, our

simulation results do not demonstrate this ability.

4.2 Length of Learning Trials

The number of trials does not perfectly reect the sample complexity of learning.

The total number of interactions with the environment depends also on the length

of learning trials. It constitutes a second consideration to take into account when

choosing the sampling policy. The issues involved here are very similar to early work

on the complexity of reinforcement learning.

The �rst studies on the complexity of reinforcement learning focused on the length

of Q-learning's �rst trial in goal-achievement problems. First Whitehead showed

that the expected length of the ql's �rst trial can grow exponentially with the

size of the environment (Whitehead, 1991). This is basically because ql dynamics

may result in a random walk during the �rst trial, and random walks can take

exponential time. Typically, diÆcult problems are those where more actions take

you away from the goal than bring you closer, or where in each state a reset action

brings you back to the starting state (reset problems). Thrun showed later that the
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use of directed (counter-based) exploration techniques could alleviate this problem

in ql, guaranteeing polynomial complexity of the �rst trial in any deterministic

mdp (Thrun, 1992). Simultaneously, Koenig and Simmons showed that some changes

in the parameters, such as the initial Q-values and the reward function, could have

the same e�ect in any mdp (Koenig & Simmons, 1996).

It is easy to see that reinforce faces the same diÆculties as undirected ql in

the same kind of environments. Depending on the way the controller is initialized in

the beginning of learning, the complexity of the �rst trial(s) may be very bad due

to initial random walk of the algorithm. For instance one may show that there is a

�nite mdp such that, if the controller is initialized by drawing the action probabilities

�(s; �) uniformly in the simplex, then the expected length of reinforce's �rst trial is

in�nite (Meuleau, 2000). Also, as the update consecutive to one trial may not change

the policy a lot, one may expect a very bad performance during several trials in the

beginning of learning, not only the very �rst one. It is clear that changing the reward

model|as suggested by Koenig and Simmons for ql|may not reduce the expected

length of reinforce's very �rst trial: as we do not update the weights during a

trial, the length of the �rst trial depends only on the initial controller. However,

a change in the reward model implies a change of objective function. Therefore,

it will be perceptible after the �rst weight-update. The o�-policy implementations

of reinforce proposed in the previous section can be used with eÆcient directed

exploration policies to avoid initial random walk. Algorithms 3 to 5 can be used with

�e set to many directed exploration policies (which are often deterministic and non

stationary), including Thrun's counter-based (1992) and Meuleau and Bourgine's

global exploration policy (1999). Moreover, the algorithms can easily be adapted to

stochastic exploration policies. It can be shown that, if we mix the current policy

with Thrun's counter-based exploration policy , then the expected length of the �rst

trial of algorithms 3 to 5 in any deterministic mdp tends to a polynomial in the size

of the mdp, when � tends to 1 (provided that the controller is initialized uniformly)

(Meuleau, 2000).

There is then double motivation when choosing the sampling policy to execute

during learning trials. These objectives may be contradictory or compatible. In the

next section, we present simulations results that indicate that it is possible to �nd

sampling policies that reduce both the number of learning trials and their length.

5 Numerical Simulations

We tested our o�-policy algorithms on a simple grid-world problem consisting of an

empty square room where the starting state and the goal are two opposite corners.

Four variants of this problem were tried: there may or may not be a reset action, and

the problem can be fully observable or partially observable. When the problem is

partially observable, the agent cannot perceive its true location, but only the presence

or absence of walls in its immediate proximity. This problem was not designed to
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be hard for the algorithms, and every version of reinforce converges easily to the

global optimum. However, it allows to compare well the di�erent variants in terms

of learning speed.

We used the algorithms presented in �gures 1 to 5. Controllers were initialized by

setting �(s; �) to the uniform distribution on actions, for all states s. We tried several

parameter settings and environments of di�erent sizes. In the choice of the sampling

policy, we focused on the objective of reducing the trials length: we tried several

directed exploration policies as �e, including greedy counter-based, Thrun's counter-

based (1992) and an indirect (ql) implementation of a global counter-based explo-

ration policy proposed by Meuleau and Bourgine (Meuleau & Bourgine, 1999). Ex-

ploration strategies designed for fully observable environments where naively adapted

by replacing states by observations in the formulas, when dealing with the partially

observable variants of the problem. These (empirical) exploration policies derived in

the goal of minimizing the length of trials, appear empirically to have a bene�cial

inuence on the number of trials too, when they are implemented eÆciently as in

algorithm 5.

In an on-policy algorithm, the observed length of learning trials represents well

the quality of the policy learned so far. However, it is not the case in o�-policy

algorithm, where the length of the learning trials depends only partially on the

current policy. To measure the quality of the learned policy, we perform after each

learning trial of an o�-policy algorithm, a test trial in which all the variables are

frozen and (exclusively) the current policy is executed. The evolution of the length

of both the learning trials and the test trials is recorded.

The results of these experiments are qualitatively independent of the variant

and the size of the problem (although we were unable to run experiments in reset

problems of reasonable size, due to the exponential complexity of random walk in

these problems). The best performances were obtained using Meuleau and Bourgine's

global exploration policy. In general naive sampling is very stable and slow. With

small values of �, simple is allows reducing the length of learning trials without

a�ecting the quality of policy learned. However, it rapidly becomes very unstable

and systematically jumps to very bad policies as � increases. Algorithm 5 is by far

the most eÆcient algorithm. It stays stable when � approaches 1, even with relatively

small number of learning trials (n = 5). It can thus be used with high values of �,

which allows dramatic reduction of the trials' length. Our experiments show that it

always comes with a considerable improvement of the quality of the policy learned

over several trials. Figures 6, 8 and 7, 9 present sample results. Figures 6, 8 contain

classical learning curves, that is, plots of the evolution of the length of learning trials

as learning progresses. The evolution of the length of the test trials of o�-policy

algorithms is also represented. It shows how the quality of the policy learned by

these algorithms evolves. The same data is re-plotted in a di�erent form in �g. 7, 9.

The graph presented here represent the evolution of the quality of the policy learned

as a function of the total number of time-steps of interactions with the environment.

The quality of the policy learned is measured by the length of learning trials in the
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Figure 8: Learning curves obtained in the 15�15 partially-observable no-reset variant of the

problem, using Meuleau and Bourgine's global exploration policy. Top: � = 0:3; bottom: � = 0:5.

(goal-reward,  = 0:95, � = 0:01, n = 3, � = 1, average of 30 runs)
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Figure 9: Sample complexity of the algorithms measured in the same conditions as in �g. 8. Top:

� = 0:3; bottom: � = 0:5.
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case of the on-policy algorithm, and by the length of test trials in the case of o�-

policy algorithms. Therefore, the graphs of �g. 7, 9 represent accurately the sample

complexity of the algorithms.

6 Conclusion

We have proposed o�-policy implementations of reinforce based on the technique

of importance sampling. We have argued that these algorithms may be used to

reduce the sample complexity of learning. Finally, we presented simulation results

where o�-policy implementations allow reducing the number of learning trials as well

as their length, which results in a dramatic acceleration of learning.
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